World Library  
Flag as Inappropriate
Email this Article

Four-terminal sensing

Article Id: WHEBN0007154495
Reproduction Date:

Title: Four-terminal sensing  
Author: World Heritage Encyclopedia
Language: English
Subject: Ohmmeter, ATX, Resistor, William Thomson, 1st Baron Kelvin, Contact resistance
Collection: Impedance Measurements, Scientific Techniques
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Four-terminal sensing

Four-point measurement of resistance between voltage sense connections 2 and 3. Current is supplied via force connections 1 and 4.

Four-terminal sensing (4T sensing), 4-wire sensing, or 4-point probes method is an electrical impedance measuring technique that uses separate pairs of current-carrying and voltage-sensing electrodes to make more accurate measurements than the simpler and more usual two-terminal (2T) sensing. Four-terminal sensing is used in some ohmmeters and impedance analyzers, and in wiring for strain gauges and resistance thermometers. Four-point probes are also used to measure sheet resistance of thin films.

Separation of current and voltage electrodes eliminates the lead and contact resistance from the measurement. This is an advantage for precise measurement of low resistance values. For example, an LCR bridge instruction manual recommends the four-terminal technique for accurate measurement of resistance below 100 ohms.[1]

Four-terminal sensing is also known as Kelvin sensing, after William Thomson, Lord Kelvin, who invented the Kelvin bridge in 1861 to measure very low resistances using four-terminal sensing. Each two-wire connection can be called a Kelvin connection. A pair of contacts that is designed to connect a force-and-sense pair to a single terminal or lead simultaneously is called a Kelvin contact. A clip, often a crocodile clip, that connects a force-and-sense pair is called a Kelvin clip.

Contents

  • Operating principle 1
  • 3-wire sensing 2
  • See also 3
  • References 4
  • External links 5

Operating principle

When a Kelvin connection is used, current is supplied via a pair of force connections (current leads). These generate a voltage drop across the impedance to be measured according to Ohm's law V=RI. A pair of sense connections (voltage leads) are made immediately adjacent to the target impedance, so that they do not include the voltage drop in the force leads or contacts. Since almost no current flows to the measuring instrument, the voltage drop in the sense leads is negligible.

It is usual to arrange the sense wires as the inside pair, while the force wires are the outside pair. If the force and sense connections are exchanged, accuracy can be affected, because more of the lead resistance is included in the measurement. The force wires may have to carry a large current when measuring very small resistances, and must be of adequate gauge; the sense wires can be of a small gauge.

The technique is commonly used in low-voltage power supplies, where it is called remote sensing, to measure the voltage delivered to the load independent of the voltage drop in the supply wires.

It is common to provide 4-wire connections to current-sensing shunt resistors of low resistance operating at high current.

3-wire sensing

A variant uses three wires, with separate load and sense leads at one end, and a common wire on the other. Voltage drop in the common wire is compensated for by assuming that it is the same as in the load wire, of the same gauge and length. This technique is widely used in resistance thermometers, also known as resistance temperature detectors or RTDs.

Another example is in the ATX power supply standard, which includes a remote sense wire connected to the 3.3V supply line at connector pin 13, but no sense connection for the ground wires.

See also

References

  1. ^ Manual for the Racal-Dana Databridge 9343M: "If the resistance value is low, less than 100 ohms, make a four-terminal connection..."

External links

  • All About Circuits - Kelvin Resistance Measurement
  • 4 wire resistance measurement tutorial video (HD)
  • Measuring Electrical Resistivity
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.