The title page of the original 1879 edition
Begriffsschrift (German for, roughly, "conceptscript") is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book.
Begriffsschrift is usually translated as concept writing or concept notation; the full title of the book identifies it as "a formula language, modeled on that of arithmetic, of pure thought." Frege's motivation for developing his formal approach to logic resembled Leibniz's motivation for his calculus ratiocinator (despite that, in his Foreword Frege clearly denies that he reached this aim, and also that his main aim would be constructing an ideal language like Leibniz's, what Frege declares to be quite hard and idealistic, however, not impossible task). Frege went on to employ his logical calculus in his research on the foundations of mathematics, carried out over the next quarter century.
Contents

Notation and the system 1

The calculus in Frege's work 2

Influence on other works 3

A quotation 4

See also 5

References 6

Further reading 7

External links 8
Notation and the system
The calculus contains the first appearance of quantified variables, and is essentially classical bivalent secondorder logic with identity. It is bivalent in that sentences or formulas denote either True or False; second order because it includes relation variables in addition to object variables, and it allows quantification over both. The modifier "with identity" specifies that the language includes the identity function, =.
Frege presents his calculus using idiosyncratic twodimensional notation: connectives and quantifiers are written using lines connecting formulas, rather than the symbols ¬, ∧, and ∀ in use today. For example, that judgement B materially implies judgement A, i.e. B \rightarrow A is written as .
In the first chapter, Frege defines basic ideas and notation, like proposition ("judgement"), the universal quantifier ("the generality"), the conditional, negation and the "sign for identity of content" \equiv (which he used to indicate both material equivalence and identity proper); in the second chapter he declares nine formalized propositions as axioms.
Basic concept

Frege's notation

Modern notations

Judging

\vdash A,\Vdash A

p(A)=1
p(A)=i

Negation


\neg A, \sim A

Conditional (implication)


B\rightarrow A
B\supset A

Universal quantification


\forall x\colon F(x)

Existential quantification


\sim \forall x\colon \sim F(x)
\exists x\colon F(x)

Content identity (equivalence/identity)

A\equiv B

A ↔ B
A \equiv B
A = B

In chapter 1, §5, Frege defines the conditional as follows:

"Let A and B refer to judgeable contents, then the four possibilities are:

A is asserted, B is asserted;

A is asserted, B is negated;

A is negated, B is asserted;

A is negated, B is negated.
Let

signify that the third of those possibilities does not obtain, but one of the three others does. So if we negate , that means the third possibility is valid, i.e. we negate A and assert B."
The calculus in Frege's work
Frege declared nine of his propositions to be axioms, and justified them by arguing informally that, given their intended meanings, they express selfevident truths. Reexpressed in contemporary notation, these axioms are:

\vdash \ \ A \rightarrow \left( B \rightarrow A \right)

\vdash \ \ \left[ \ A \rightarrow \left( B \rightarrow C \right) \ \right] \ \rightarrow \ \left[ \ \left( A \rightarrow B \right) \rightarrow \left( A \rightarrow C \right) \ \right]

\vdash \ \ \left[ \ D \rightarrow \left( B \rightarrow A \right) \ \right] \ \rightarrow \ \left[ \ B \rightarrow \left( D \rightarrow A \right) \ \right]

\vdash \ \ \left( B \rightarrow A \right) \ \rightarrow \ \left( \lnot A \rightarrow \lnot B \right)

\vdash \ \ \lnot \lnot A \rightarrow A

\vdash \ \ A \rightarrow \lnot\lnot A

\vdash \ \ \left( c=d \right) \rightarrow \left( f(c) \rightarrow f(d) \right)

\vdash \ \ c = c

\vdash \ \ \forall a f(a) \rightarrow \ f(c)
These are propositions 1, 2, 8, 28, 31, 41, 52, 54, and 58 in the Begriffschrifft. (1)–(3) govern material implication, (4)–(6) negation, (7) and (8) identity, and (9) the universal quantifier. (7) expresses Leibniz's indiscernibility of identicals, and (8) asserts that identity is a reflexive relation.
All other propositions are deduced from (1)–(9) by invoking any of the following inference rules:

Modus ponens allows us to infer \vdash B from \vdash A \to B and \vdash A;

The rule of generalization allows us to infer \vdash P \to \forall x A(x) from \vdash P \to A(x) if x does not occur in P;

The rule of substitution, which Frege does not state explicitly. This rule is much harder to articulate precisely than the two preceding rules, and Frege invokes it in ways that are not obviously legitimate.
The main results of the third chapter, titled "Parts from a general series theory," concern what is now called the ancestral of a relation R. "a is an Rancestor of b" is written "aR*b".
Frege applied the results from the Begriffsschrifft, including those on the ancestral of a relation, in his later work The Foundations of Arithmetic. Thus, if we take xRy to be the relation y = x + 1, then 0R*y is the predicate "y is a natural number." (133) says that if x, y, and z are natural numbers, then one of the following must hold: x < y, x = y, or y < x. This is the socalled "law of trichotomy".
Influence on other works
For a careful recent study of how the Begriffsschrift was reviewed in the German mathematical literature, see Vilko (1998). Some reviewers, especially Ernst Schröder, were on the whole favorable. All work in formal logic subsequent to the Begriffsschrift is indebted to it, because its secondorder logic was the first formal logic capable of representing a fair bit of mathematics and natural language.
Some vestige of Frege's notation survives in the "turnstile" symbol \vdash derived from his "Urteilsstrich" (judging/inferring stroke) │ and "Inhaltsstrich" (i.e. content stroke) ──. Frege used these symbols in the Begriffsschrift in the unified form ├─ for declaring that a proposition is true. In his later "Grundgesetze" he revises slightly his interpretation of the ├─ symbol.
In "Begriffsschrift" the "Definitionsdoppelstrich" (i.e. definition double stroke) │├─ indicates that a proposition is a definition. Furthermore, the negation sign \neg can be read as a combination of the horizontal Inhaltsstrich with a vertical negation stroke. This negation symbol was reintroduced by Arend Heyting^{[1]} in 1930 to distinguish intuitionistic from classical negation. It also appears in Gerhard Gentzen's doctoral dissertation.
In the Tractatus Logico Philosophicus, Ludwig Wittgenstein pays homage to Frege by employing the term Begriffsschrift as a synonym for logical formalism.
Frege's 1892 essay, Sense and reference, recants some of the conclusions of the Begriffsschrifft about identity (denoted in mathematics by the "=" sign). In particular, he rejects the "Begriffsschrift" view that the identity predicate expresses a relationship between names, in favor of the conclusion that it expresses a relationship between the objects that are denoted by those names.
A quotation
"If the task of philosophy is to break the domination of words over the human mind [...], then my concept notation, being developed for these purposes, can be a useful instrument for philosophers [...] I believe the cause of logic has been advanced already by the invention of this concept notation." (Preface to the Begriffsschrift)
See also
References

^ Arend Heyting: "Die formalen Regeln der intuitionistischen Logik," in: Sitzungsberichte der preußischen Akademie der Wissenschaften, phys.math. Klasse, 1930, S. 4265.
Further reading

Gottlob Frege. Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle, 1879.
Translations:

Bynum, Terrell Ward, trans. and ed., 1972. Conceptual notation and related articles, with a biography and introduction. Oxford Uni. Press.

BauerMengelberg, Stefan, 1967, "Concept Script" in Jean Van Heijenoort, ed., From Frege to Gödel: A Source Book in Mathematical Logic, 18791931. Harvard Uni. Press.
Secondary literature:

Begriffsschrift", Mind 94: 33144.

Ivor GrattanGuinness, 2000. In Search of Mathematical Roots. Princeton University Press.

Risto Vilkko, 1998, ",BegriffsschriftThe reception of Frege's " Historia Mathematica 25(4): 41222.
External links

Frege's Logic, Theorem, and Foundations for Arithmetic entry by Edward N. Zalta in the Stanford Encyclopedia of Philosophy

[2] Begriffsschrift as facsimile for download (2.5 MB)
Computable knowledge


Topics and
concepts



Proposals and
implementations



In fiction



This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.