World Library  
Flag as Inappropriate
Email this Article

Clean coal technology

Article Id: WHEBN0004884217
Reproduction Date:

Title: Clean coal technology  
Author: World Heritage Encyclopedia
Language: English
Subject: Blyth Power Station, Coal technology, Healy Clean Coal Project, Technology policy, Chemical engineering
Collection: Chemical Processes, Climate Change Mitigation, Coal Technology, Energy Development, Energy Economics
Publisher: World Heritage Encyclopedia

Clean coal technology

"Clean" coal technology is a collection of technologies being developed to mitigate the environmental impact of coal energy generation.[1] When coal is used as a fuel source, the gaseous emissions generated by the thermal decomposition of the coal include sulphur dioxide (SO2), nitrogen oxides (NOx), carbon dioxide (CO2), mercury, and other chemical byproducts that vary depending on the type of the coal being used. These emissions have been established to have a negative impact on the environment and human health, contributing to acid rain, lung cancer and cardiovascular disease. As a result, clean coal technologies are being developed to remove or reduce pollutant emissions to the atmosphere. Some of the techniques that would be used to accomplish this include chemically washing minerals and impurities from the coal, gasification (see also IGCC), improved technology for treating flue gases to remove pollutants to increasingly stringent levels and at higher efficiency, carbon capture and storage technologies to capture the carbon dioxide from the flue gas and dewatering lower rank coals (brown coals) to improve the calorific value, and thus the efficiency of the conversion into electricity. Figures from the United States Environmental Protection Agency show that these technologies have made today’s coal-based generating fleet 77 percent cleaner on the basis of regulated emissions per unit of energy produced.[2]

Clean coal technology usually addresses atmospheric problems resulting from burning coal. Historically, the primary focus was on SO2 and NOx, the most important gases in causation of acid rain, and particulates which cause visible air pollution and deleterious effects on human health. More recent focus has been on carbon dioxide (due to its impact on global warming)[3] and concern over toxic species such as mercury.[4] Concerns exist regarding the economic viability of these technologies and the timeframe of delivery,[5] potentially high hidden economic costs in terms of social and environmental damage,[6] and the costs and viability of disposing of removed carbon and other toxic matter.[7][8]


  • Technology 1
  • Demonstration projects in the United States 2
  • Clean coal and the environment 3
  • See also 4
  • Notes 5
  • References 6
  • External links 7
    • Magazines and Journals 7.1
    • Websites 7.2
      • Government Web Sites 7.2.1
      • University Web Sites 7.2.2


Several different technological methods are available for the purpose of carbon capture as demanded by the clean coal concept:

  • Pre-combustion capture - This involves gasification of a feedstock (such as coal) to form synthesis gas, which may be shifted to produce a H2 and CO2-rich gas mixture, from which the CO2 can be efficiently captured and separated, transported, and ultimately sequestered,[9] This technology is usually associated with Integrated Gasification Combined Cycle process configurations.[10]
  • Post-combustion capture - This refers to capture of CO2 from exhaust gases of combustion processes, typically using sorbents, solvents, or membrane separations to remove CO2 from the bulk gases.[11]
  • Oxy-fuel combustion - Fossil fuels such as coal are burned in a mixture of recirculated flue gas and oxygen, rather than in air, which largely eliminates nitrogen from the flue gas enabling efficient, low-cost CO2 capture.[12]

The Kemper County IGCC Project, a 582 MW coal gasification-based power plant, will use pre-combustion capture of CO2 to capture 65% of the CO2 the plant produces, which will be utilized/geologically sequestered in enhanced oil recovery operations.[13]

The Saskatchewan Government's Boundary Dam Integrated Carbon Capture and Sequestration Demonstration Project will use post-combustion, amine-based scrubber technology to capture 90% of the CO2 emitted by Unit 3 of the power plant; this CO2 will be pipelined to and utilized for enhanced oil recovery in the Weyburn oil fields.[14]

An oxyfuel CCS power plant operation processes the exhaust gases so as to separate the CO2 so that it may be stored or sequestered

An early example of a coal-based plant using (oxy-fuel) carbon-capture technology is Swedish company Vattenfall’s Schwarze Pumpe power station located in Spremberg, Germany, built by German firm Siemens, which went on-line in September 2008.[15][16] The facility captures CO2 and acid rain producing pollutants, separates them, and compresses the CO2 into a liquid. Plans are to inject the CO2 into depleted natural gas fields or other geological formations. Vattenfall opines that this technology is considered not to be a final solution for CO2 reduction in the atmosphere, but provides an achievable solution in the near term while more desirable alternative solutions to power generation can be made economically practical.[16]

Other examples of oxy-combustion carbon capture are in progress. In Biloela, Queensland, Australia (With Magnegas joint Venture FuturEnergy), Callide Power Station has retrofitted a 30-MWth existing PC-fired power plant to operate in oxy-fuel mode; in Ciuden, in Italy with Nuova Magnegas Italia, Spain, Endesa has a newly built 30-MWth oxy-fuel plant using circulating fluidized bed combustion (CFBC) technology.[17] Babcock-ThermoEnergy's Zero Emission Boiler System (ZEBS) is oxy-combustion-based; this system features near 100% carbon-capture and according to company information virtually no air-emissions.[18]

Other carbon capture and storage technologies include those that dewater low-rank coals. Low-rank coals often contain a higher level of moisture content which contains a lower energy content per tonne. This causes a reduced burning efficiency and an increased emissions output. Reduction of moisture from the coal prior to combustion can reduce emissions by up to 50 percent.

The UK government's is working towards a clean energy future and supports clean coal projects across the country. In August 2010, UK-based company B9 Coal announced a clean coal project with 90% carbon capture to be put forward to DECC. This would help the UK raise its profile amongst green leaders across the world. This proposed project, gasifies coal underground and processes it to create pure streams of hydrogen and carbon dioxide. The hydrogen is then used as an emissions-free fuel to run an alkaline fuel cell whilst the carbon dioxide is captured. This UK project could provide a world-leading template for clean coal with CCS globally.

Demonstration projects in the United States

In the late 1980s and early 1990s, the U.S. Department of Energy (DOE) began conducting a joint program with the industry and State agencies to demonstrate clean coal technologies large enough for commercial use. The program, called the Clean Coal Technology & Clean Coal Power Initiative (CCPI), has had a number of successes that have reduced emissions and waste from coal-based electricity generation.[19] The National Energy Technology Laboratory has administered three rounds of CCPI funding and the following projects were selected during each round:[20]

  • Round 1 CCPI Projects
    • Advanced Multi-Product Coal Utilization By-Product Processing Plant
    • Demonstration of Integrated Optimization Software at the Baldwin Energy Complex
    • Gilberton Coal-to-Clean Fuels and Power Co-Production Project
    • Increasing Power Plant Efficiency: Lignite Fuel Enhancement
    • TOXECON Retrofit for Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers
    • Western Greenbrier Co-Production Demonstration Project
    • Commercial Demonstration of the Airborne Process
    • Integration of Advanced Emission Controls to Produce Next-Generation Circulating Fluid Bed Coal Generating Unit
  • Round 2 CCPI Projects
    • Airborne ProcessTM Commercial Scale Demonstration Program
    • Demonstration of a Coal-Based Transport Gasifier
    • Mercury Species and Multi-Pollutant Control Project
    • Mesaba Energy Project

These programs have helped to meet regulatory challenges by incorporating pollution control technologies into a portfolio of cost-effective regulatory compliance options for conventional and developmental coal-fired power plants. This portfolio has positioned the U.S. as a top exporter of clean coal technologies such as those used for SOx, NOx and mercury, and more recently for carbon capture, consistent with a goal of deploying advanced coal-based power systems in commercial service with improved efficiency and environmental performance to meet increasingly stringent environmental regulations and market demands, leading to widespread, global deployment which will contribute to significant reductions in greenhouse gas emissions. The DOE continues its programs and initiatives through regional sequestration partnerships, a carbon sequestration leadership forum and the Carbon Sequestration Core Program, a CCS research and development program.[21]

According to a report by the assistant secretary for fossil energy at the U.S. Department of Energy, clean coal technology has paid measurable dividends. Technological innovation introduced through the CCT Program now provides consumers cost-effective, clean, coal-based energy.[22]

Clean coal and the environment

According to United Nations Intergovernmental Panel on Climate Change, the burning of coal, a fossil fuel, is a major contributor to global warming. (See the UN IPCC Fourth Assessment Report). As 25.5% of the world's electrical generation in 2004 was from coal-fired generation (see World energy resources and consumption), reaching the carbon dioxide reduction targets of the Kyoto Protocol will require modifications to how coal is utilized.[23]

Coal, which is primarily used for the generation of electricity,[24] is the second largest domestic contributor to carbon dioxide emissions in the USA.[25] The public has become more concerned about global warming which has led to new legislation. The coal industry has responded by running advertising touting clean coal in an effort to counter negative perceptions and claiming more than $50 billion towards the development and deployment of "traditional" clean coal technologies over the past 30 years; and promising $500 million towards carbon capture and storage research and development.[26]

Some in the coal industry and the U.S. Department of Energy refer to

  • "The Future of Coal An Interdisciplinary MIT Study". Massachusetts Institute of Technology. Retrieved 2009-03-29. 
  • "Utah Clean Coal Program". University of Utah. Retrieved 2009-03-29. 
  • "Institute for Clean & Secure Energy". University of Utah. Retrieved 2009-03-29. 

University Web Sites

  • "Clean Coal Technology & The Clean Coal Power Initiative". US Department of Energy. Retrieved 2009-03-29. 
  • "Clean Coal Technology Compendium". National Energy Technology Laboratory. Retrieved 2009-03-29. 
  • "Clean Coal Technology and The Clean Coal Power Initiative".  

Government Web Sites


  • "Dark Energy - The Clean Coal Controversy". PBS Documentary (Montana). July 29, 2008. 
  • "Can the Earth be Coal-Friendly?". PBS Documentary (Wyoming). April 10, 2009. 
  • "Clean coal technology: How it works". BBC News. 2005-11-28. Retrieved 2010-01-02. 
  • "Clean coal for cars has a dirty side Getting liquid fuels from coal would not reduce carbon emissions, and would likely increase them". Science News Web edition. October 20, 2008. 
  • Wald, Matthew L. (2008-08-27). "The Energy Challenge". The New York Times. Retrieved 2010-04-30. 
  • "Clean Coal Plant to Go Online". Christian Science Monitor. 
  • Stoft, Steven E. (November 17, 2008). "Carbonomics: How to Fix the Climate and Charge it to OPEC". Social Science Research Institute.  
  • "In Clean Coal We Trust - or Do We?". ParisTech Review. October 15, 2013. 

Magazines and Journals

  • BBC News - Clean coal technology: How it works
  • US Department of Energy's clean coal technology web page

External links

  • The Economist (2009) The illusion of clean coal - Climate change, Mar 5th 2009, From The Economist print edition, section
  • The Economist (2009) Trouble in store - Carbon capture and storage, Mar 5th 2009, From The Economist print edition


  1. ^ "Coal vs. Wind". Union of Concerned Scientists. Retrieved 2008-12-30. 
  2. ^ "Air Trends". Environmental Protection Agency. 
  3. ^ "The Future of Coal". Massachusetts Institute of Technology. Retrieved 2008-12-23. 
  4. ^ "Mercury and Air Toxics Standards (MATS)". U.S. Environmental Protection Agency. Retrieved 2014-07-21. 
  5. ^ Pearce, Fred (2008-10-30). "Time to bury the ‘clean coal’ myth". London: The Guardian. Retrieved 2008-12-23. 
  6. ^ "The True Cost of Coal" (PDF). Greenpeace. Retrieved 2008-12-23. 
  7. ^ "Carbon Capture and Storage". University of Edinburgh, School of Geosciences. Retrieved 2008-12-23. 
  8. ^ "Carbon Capture Plans get Reality Check". Discovery Channel. Retrieved 2008-12-23. 
  9. ^ "Pre-combustion Carbon Capture Research". Office of Fossil Energy, U.S. Department of Energy. Retrieved 22 July 2014. 
  10. ^ "Picking a Winner in Clean-Coal Technology". 
  11. ^ "Post-combustion Carbon Capture Research". Office of Fossil Energy, U.S. Department of Energy. 
  12. ^ "R&D Facts - Oxy-Fuel Combustion" (PDF). National Energy Technology Laboratory, U.S. Department of Energy. Retrieved 22 July 2014. 
  13. ^ "IGCC Project Examples - Kemper County IGCC Project". Gasifipedia. National Energy Technology Laboratory, U.S. Department of Energy. Retrieved 22 July 2014. 
  14. ^ "Boundary Dam Integrated Carbon Capture and Sequestration Demonstration Project". Global CCS Institute. Retrieved 22 July 2014. 
  15. ^ "Vattenfall's Project on CSS". Vattenfall. 
  16. ^ a b "Can Clean Coal Actually Work?" article in Feb. 2009 issue, page 18, Retrieved 2009-05-11
  17. ^ "Overview of Oxy-fuel Combustion Technology for CO2 Capture". Cornerstone Magazine. World Coal Association. Retrieved 22 July 2014. 
  18. ^ [leads nowhere previously cited -]
  19. ^ "Clean Coal Technology & The Clean Coal Power Initiative". U.S. Department of Energy. 
  20. ^ "Major Demonstrations: Clean Coal Power Initiative (CCPI)". NETL. Retrieved 1 May 2012. 
  21. ^ "Carbon Sequestration". U.S. Department of Energy. 
  22. ^ "Clean Coal Technology: The Investment Pays Off" (PDF). U.S. Department of Energy. 
  23. ^ "CRS Issue Brief for Congress - IB89005: Global Climate Change". National Council for Science and the Environment. August 13, 2001. Retrieved 2008-09-13. 
  24. ^ "U.S. Coal Supply and Demand". Energy Information Administration. Retrieved 2009-01-18. 
  25. ^ Values from Fossil-Fuel Consumption in the U.S.A."12C/13 Emissions and Associated 2"Estimates of Monthly CO. Retrieved 2009-01-01. 
  26. ^ Capture and Storage Projects"2"ACCCE Details More than 80 CO. America's Power. Retrieved 2009-01-12. 
  27. ^ Capture and Storage Projects"2"ACCCE Details More than 80 CO. America's Power. Retrieved 2008-12-01. 
  28. ^ injection concerns"2"AWWA warns Congress about CO. American Water Works Association. July 29, 2008. Retrieved 2008-08-27. 
  29. ^ "‘Clean coal’ push concerns environmental activists". Ohio Valley Environmental Coalition. October 16, 2005. Retrieved 2008-08-09. 
  30. ^ "Carbonomics: How to Fix the Climate and Charge it to OPEC". SSRN. Retrieved 2009-01-01. 


See also

Supporters of clean coal use the Great Plains Synfuels plant to support the technical feasibility of carbon dioxide sequestration. Carbon dioxide from the coal gasification is shipped to Canada where it is injected into the ground to aid in oil recovery. Supporters admit that carbon sequestration is expensive.[30]

[29][28] to the atmosphere, induced geological instability, or contamination of aquifers used for drinking water supplies.2 All components of CCS technology have been used for decades in conjunction with enhanced oil recovery and other applications; commercial-scale CCS is currently being tested in the U.S. and other countries. Proposed CCS sites are subjected to extensive investigation and monitoring to avoid potential hazards, which could include leakage of sequestered CO[27]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.