In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted L, is a particular Class (set theory) of sets that can be described entirely in terms of simpler sets. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized ContinuumHypothesis".^{[1]} In this, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.
Contents

What is L? 1

Additional facts about the sets Lα 2

L is a standard inner model of ZFC 3

L is absolute and minimal 4

L and large cardinals 4.1

L can be wellordered 5

L has a reflection principle 6

The generalized continuum hypothesis holds in L 7

Constructible sets are definable from the ordinals 8

Relative constructibility 9

See also 10

Notes 11

References 12
What is L?
L can be thought of as being built in "stages" resembling the von Neumann universe, V. The stages are indexed by ordinals. In von Neumann's universe, at a successor stage, one takes V_{α+1} to be the set of all subsets of the previous stage, V_{α}. By contrast, in Gödel's constructible universe L, one uses only those subsets of the previous stage that are:
By limiting oneself to sets defined only in terms of what has already been constructed, one ensures that the resulting sets will be constructed in a way that is independent of the peculiarities of the surrounding model of set theory and contained in any such model.
Define

\operatorname{Def}(X) := \Bigl\{ \{ y \mid y \in X \text{ and } (X,\in) \models \Phi(y,z_1,\ldots,z_n) \} ~ \Big ~ \Phi \text{ is a firstorder formula and } z_{1},\ldots,z_{n} \in X \Bigr\}.
L is defined by transfinite recursion as follows:

L_{0} := \varnothing.

L_{\alpha + 1} := \operatorname{Def}(L_\alpha).

If \lambda is a limit ordinal, then L_{\lambda} := \bigcup_{\alpha < \lambda} L_{\alpha}. Here α<λ means α precedes λ.

L := \bigcup_{\alpha \in \mathbf{Ord}} L_{\alpha}. Here Ord denotes the class (set theory) of all ordinals.
If z is an element of L_{α}, then z = {y  y ∈ L_{α} and y ∈ z} ∈ Def (L_{α}) = L_{α+1}. So L_{α} is a subset of L_{α+1}, which is a subset of the power set of L_{α}. Consequently, this is a tower of nested transitive sets. But L itself is a proper class.
The elements of L are called "constructible" sets; and L itself is the "constructible universe". The "axiom of constructibility", aka "V=L", says that every set (of V) is constructible, i.e. in L.
Additional facts about the sets L_{α}
An equivalent definition for L_{α} is:


For any ordinal α, L_{\alpha} = \bigcup_{\beta < \alpha} \operatorname{Def} (L_{\beta}) \! .
For any finite ordinal n, the sets L_{n} and V_{n} are the same (whether V equals L or not), and thus L_{ω} = V_{ω}: their elements are exactly the hereditarily finite sets. Equality beyond this point does not hold. Even in models of ZFC in which V equals L, L_{ω+1} is a proper subset of V_{ω+1}, and thereafter L_{α+1} is a proper subset of the power set of L_{α} for all α > ω. On the other hand, V equals L does imply that V_{α} equals L_{α} if α = ω_{α}, for example if α is inaccessible. More generally, V equals L implies H_{α} equals L_{α} for all infinite cardinals α.
If α is an infinite ordinal then there is a bijection between L_{α} and α, and the bijection is constructible. So these sets are equinumerous in any model of set theory that includes them.
As defined above, Def(X) is the set of subsets of X defined by Δ_{0} formulas (that is, formulas of set theory containing only bounded quantifiers) that use as parameters only X and its elements.
An alternate definition, due to Gödel, characterizes each L_{α+1} as the intersection of the power set of L_{α} with the closure of L_\alpha\cup\{L_\alpha\} under a collection of nine explicit functions. This definition makes no reference to definability.
All arithmetical subsets of ω and relations on ω belong to L_{ω+1} (because the arithmetic definition gives one in L_{ω+1}). Conversely, any subset of ω belonging to L_{ω+1} is arithmetical (because elements of L_{ω} can be coded by natural numbers in such a way that ∈ is definable, i.e., arithmetic). On the other hand, L_{ω+2} already contains certain nonarithmetical subsets of ω, such as the set of (natural numbers coding) true arithmetical statements (this can be defined from L_{ω+1} so it is in L_{ω+2}).
All hyperarithmetical subsets of ω and relations on ω belong to L_{\omega_1^{\mathrm{CK}}} (where \omega_1^{\mathrm{CK}} stands for the ChurchKleene ordinal), and conversely any subset of ω that belongs to L_{\omega_1^{\mathrm{CK}}} is hyperarithmetical.^{[2]}
L is a standard inner model of ZFC
L is a standard model, i.e. it is a transitive class and it uses the real element relationship, so it is wellfounded. L is an inner model, i.e. it contains all the ordinal numbers of V and it has no "extra" sets beyond those in V, but it might be a proper subclass of V. L is a model of ZFC, which means that it satisfies the following axioms:

Axiom of regularity: Every nonempty set x contains some element y such that x and y are disjoint sets.

(L,∈) is a substructure of (V,∈), which is well founded, so L is well founded. In particular, if x∈L, then by the transitivity of L, y∈L. If we use this same y as in V, then it is still disjoint from x because we are using the same element relation and no new sets were added.

If x and y are in L and they have the same elements in L, then by L's transitivity, they have the same elements (in V). So they are equal (in V and thus in L).

{} = L_{0} = {y  y∈L_{0} and y=y} ∈ L_{1}. So {} ∈ L. Since the element relation is the same and no new elements were added, this is the empty set of L.

If x∈L and y∈L, then there is some ordinal α such that x∈L_{α} and y∈L_{α}. Then {x,y} = {s  s∈L_{α} and (s=x or s=y)} ∈ L_{α+1}. Thus {x,y} ∈ L and it has the same meaning for L as for V.

Axiom of union: For any set x there is a set y whose elements are precisely the elements of the elements of x.

If x ∈ L_{α}, then its elements are in L_{α} and their elements are also in L_{α}. So y is a subset of L_{α}. y = {s  s∈L_{α} and there exists z∈x such that s∈z} ∈ L_{α+1}. Thus y ∈ L.

Axiom of infinity: There exists a set x such that {} is in x and whenever y is in x, so is the union y U {y}.

From transfinite induction, we get that each ordinal α ∈ L_{α+1}. In particular, ω ∈ L_{ω+1} and thus ω ∈ L.

Axiom of separation: Given any set S and any proposition P(x,z_{1},...,z_{n}), {xx∈S and P(x,z_{1},...,z_{n})} is a set.

By induction on subformulas of P, one can show that there is an α such that L_{α} contains S and z_{1},...,z_{n} and (P is true in L_{α} if and only if P is true in L (this is called the "reflection principle")). So {x  x∈S and P(x,z_{1},...,z_{n}) holds in L} = {x  x∈L_{α} and x∈S and P(x,z_{1},...,z_{n}) holds in L_{α}} ∈ L_{α+1}. Thus the subset is in L.

Axiom of replacement: Given any set S and any mapping (formally defined as a proposition P(x,y) where P(x,y) and P(x,z) implies y = z), {y  there exists x∈S such that P(x,y)} is a set.

Let Q(x,y) be the formula that relativizes P to L, i.e. all quantifiers in P are restricted to L. Q is a much more complex formula than P, but it is still a finite formula, and since P was a mapping over L, Q must be a mapping over V; thus we can apply replacement in V to Q. So {y  y∈L and there exists x∈S such that P(x,y) holds in L} = {y  there exists x∈S such that Q(x,y)} is a set in V and a subclass of L. Again using the axiom of replacement in V, we can show that there must be an α such that this set is a subset of L_{α} ∈ L_{α+1}. Then one can use the axiom of separation in L to finish showing that it is an element of L.

Axiom of power set: For any set x there exists a set y, such that the elements of y are precisely the subsets of x.

In general, some subsets of a set in L will not be in L. So the whole power set of a set in L will usually not be in L. What we need here is to show that the intersection of the power set with L is in L. Use replacement in V to show that there is an α such that the intersection is a subset of L_{α}. Then the intersection is {z  z∈L_{α} and z is a subset of x} ∈ L_{α+1}. Thus the required set is in L.

Axiom of choice: Given a set x of mutually disjoint nonempty sets, there is a set y (a choice set for x) containing exactly one element from each member of x.

One can show that there is a definable wellordering of L which definition works the same way in L itself. So one chooses the least element of each member of x to form y using the axioms of union and separation in L.
Notice that the proof that L is a model of ZFC only requires that V be a model of ZF, i.e. we do NOT assume that the axiom of choice holds in V.
L is absolute and minimal
If W is any standard model of ZF sharing the same ordinals as V, then the L defined in W is the same as the L defined in V. In particular, L_{α} is the same in W and V, for any ordinal α. And the same formulas and parameters in Def (L_{α}) produce the same constructible sets in L_{α+1}.
Furthermore, since L is a subclass of V and, similarly, L is a subclass of W, L is the smallest class containing all the ordinals that is a standard model of ZF. Indeed, L is the intersection of all such classes.
If there is a set W in V that is a standard model of ZF, and the ordinal κ is the set of ordinals that occur in W, then L_{κ} is the L of W. If there is a set that is a standard model of ZF, then the smallest such set is such a L_{κ}. This set is called the minimal model of ZFC. Using the downward Löwenheim–Skolem theorem, one can show that the minimal model (if it exists) is a countable set.
Of course, any consistent theory must have a model, so even within the minimal model of set theory there are sets that are models of ZF (assuming ZF is consistent). However, those set models are nonstandard. In particular, they do not use the normal element relation and they are not well founded.
Because both the L of L and the V of L are the real L and both the L of L_{κ} and the V of L_{κ} are the real L_{κ}, we get that V=L is true in L and in any L_{κ} that is a model of ZF. However, V=L does not hold in any other standard model of ZF.
L and large cardinals
Since On⊂L⊆V, properties of ordinals that depend on the absence of a function or other structure (i.e. Π_{1}^{ZF} formulas) are preserved when going down from V to L. Hence initial ordinals of cardinals remain initial in L. Regular ordinals remain regular in L. Weak limit cardinals become strong limit cardinals in L because the generalized continuum hypothesis holds in L. Weakly inaccessible cardinals become strongly inaccessible. Weakly Mahlo cardinals become strongly Mahlo. And more generally, any large cardinal property weaker than 0^{#} (see the list of large cardinal properties) will be retained in L.
However, 0^{#} is false in L even if true in V. So all the large cardinals whose existence implies 0^{#} cease to have those large cardinal properties, but retain the properties weaker than 0^{#} which they also possess. For example, measurable cardinals cease to be measurable but remain Mahlo in L.
Interestingly, if 0^{#} holds in V, then there is a closed unbounded class of ordinals that are indiscernible in L. While some of these are not even initial ordinals in V, they have all the large cardinal properties weaker than 0^{#} in L. Furthermore, any strictly increasing class function from the class of indiscernibles to itself can be extended in a unique way to an elementary embedding of L into L. This gives L a nice structure of repeating segments.
L can be wellordered
There are various ways of wellordering L. Some of these involve the "fine structure" of L, which was first described by Ronald Bjorn Jensen in his 1972 paper entitled "The fine structure of the constructible hierarchy". Instead of explaining the fine structure, we will give an outline of how L could be wellordered using only the definition given above.
Suppose x and y are two different sets in L and we wish to determine whether xy. If x first appears in L_{α+1} and y first appears in L_{β+1} and β is different from α, then let x
Remember that L_{α+1} = Def (L_{α}), which uses formulas with parameters from L_{α} to define the sets x and y. If one discounts (for the moment) the parameters, the formulas can be given a standard Gödel numbering by the natural numbers. If Φ is the formula with the smallest Gödel number that can be used to define x, and Ψ is the formula with the smallest Gödel number that can be used to define y, and Ψ is different from Φ, then let x
Suppose that Φ uses n parameters from L_{α}. Suppose z_{1},...,z_{n} is the sequence of parameters that can be used with Φ to define x, and w_{1},...,w_{n} does the same for y. Then let xnn or (z_{n}=w_{n} and z_{n1}n1) or (z_{n}=w_{n} and z_{n1}=w_{n1} and z_{n2}n2) or etc.. This is called the reverselexicographic ordering; if there are multiple sequences of parameters that define one of the sets, we choose the least one under this ordering. It being understood that each parameter's possible values are ordered according to the restriction of the ordering of L to L_{α}, so this definition involves transfinite recursion on α.
The wellordering of the values of single parameters is provided by the inductive hypothesis of the transfinite induction. The values of ntuples of parameters are wellordered by the product ordering. The formulas with parameters are wellordered by the ordered sum (by Gödel numbers) of wellorderings. And L is wellordered by the ordered sum (indexed by α) of the orderings on L_{α+1}.
Notice that this wellordering can be defined within L itself by a formula of set theory with no parameters, only the freevariables x and y. And this formula gives the same truth value regardless of whether it is evaluated in L, V, or W (some other standard model of ZF with the same ordinals) and we will suppose that the formula is false if either x or y is not in L.
It is well known that the axiom of choice is equivalent to the ability to wellorder every set. Being able to wellorder the proper class V (as we have done here with L) is equivalent to the axiom of global choice, which is more powerful than the ordinary axiom of choice because it also covers proper classes of nonempty sets.
L has a reflection principle
Proving that the axiom of separation, axiom of replacement, and axiom of choice hold in L requires (at least as shown above) the use of a reflection principle for L. Here we describe such a principle.
By mathematical induction on n<ω, we can use ZF in V to prove that for any ordinal α, there is an ordinal β>α such that for any sentence P(z_{1},...,z_{k}) with z_{1},...,z_{k} in L_{β} and containing fewer than n symbols (counting a constant symbol for an element of L_{β} as one symbol) we get that P(z_{1},...,z_{k}) holds in L_{β} if and only if it holds in L.
The generalized continuum hypothesis holds in L
Let S \in L_\alpha , and let T be any constructible subset of S. Then there is some β with T \in L_{\beta+1}, so T = \{x \in L_\beta : x \in S \wedge \Phi(x, z_i)\} = \{x \in S : \Phi(x, z_i)\} , for some formula Φ and some z_i drawn from L_\beta. By the downward Löwenheim–Skolem theorem, there must be some transitive set K containing L_\alpha and some w_i, and having the same firstorder theory as L_\beta with the w_i substituted for the z_i; and this K will have the same cardinal as L_\alpha. Since V = L is true in L_\beta, it is also true in K, so K = L_\gamma for some γ having the same cardinal as α. And T = \{x \in L_\beta : x \in S \wedge \Phi(x, z_i)\} = \{x \in L_\gamma : x \in S \wedge \Phi(x, w_i)\} because L_\beta and L_\gamma have the same theory. So T is in fact in L_{\gamma+1}.
So all the constructible subsets of an infinite set S have ranks with (at most) the same cardinal κ as the rank of S; it follows that if α is the initial ordinal for κ^{+}, then L \cap \mathcal{P}(S) \subseteq L_{\alpha+ 1} serves as the "powerset" of S within L. And this in turn means that the "power set" of S has cardinal at most α. Assuming S itself has cardinal κ, the "power set" must then have cardinal exactly κ^{+}. But this is precisely the generalized continuum hypothesis relativized to L.
Constructible sets are definable from the ordinals
There is a formula of set theory that expresses the idea that X=L_{α}. It has only free variables for X and α. Using this we can expand the definition of each constructible set. If s∈L_{α+1}, then s = {yy∈L_{α} and Φ(y,z_{1},...,z_{n}) holds in (L_{α},∈)} for some formula Φ and some z_{1},...,z_{n} in L_{α}. This is equivalent to saying that: for all y, y∈s if and only if [there exists X such that X=L_{α} and y∈X and Ψ(X,y,z_{1},...,z_{n})] where Ψ(X,...) is the result of restricting each quantifier in Φ(...) to X. Notice that each z_{k}∈L_{β+1} for some β<α. Combine formulas for the z's with the formula for s and apply existential quantifiers over the z's outside and one gets a formula that defines the constructible set s using only the ordinals α that appear in expressions like X=L_{α} as parameters.
Example: The set {5,ω} is constructible. It is the unique set, s, that satisfies the formula:
\forall y (y \in s \iff (y \in L_{\omega+1} \and (\forall a (a \in y \iff a \in L_5 \and Ord (a)) \or \forall b (b \in y \iff b \in L_{\omega} \and Ord (b))))),
where Ord (a) is short for:
\forall c \in a (\forall d \in c (d \in a \and \forall e \in d (e \in c))).
Actually, even this complex formula has been simplified from what the instructions given in the first paragraph would yield. But the point remains, there is a formula of set theory that is true only for the desired constructible set s and that contains parameters only for ordinals.
Relative constructibility
Sometimes it is desirable to find a model of set theory that is narrow like L, but that includes or is influenced by a set that is not constructible. This gives rise to the concept of relative constructibility, of which there are two flavors, denoted L(A) and L[A].
The class L(A) for a nonconstructible set A is the intersection of all classes that are standard models of set theory and contain A and all the ordinals.
L(A) is defined by transfinite recursion as follows:

L_{0}(A) = the smallest transitive set containing A as an element, i.e. the transitive closure of {A}.

L_{α+1}(A) = Def (L_{α}(A))

If λ is a limit ordinal, then L_{\lambda}(A) = \bigcup_{\alpha < \lambda} L_{\alpha}(A) \! .

L(A) = \bigcup_{\alpha} L_{\alpha}(A) \! .
If L(A) contains a wellordering of the transitive closure of {A}, then this can be extended to a wellordering of L(A). Otherwise, the axiom of choice will fail in L(A).
A common example is L(R), the smallest model that contains all the real numbers, which is used extensively in modern descriptive set theory.
The class L[A] is the class of sets whose construction is influenced by A, where A may be a (presumably nonconstructible) set or a proper class. The definition of this class uses Def_{A} (X), which is the same as Def (X) except instead of evaluating the truth of formulas Φ in the model (X,∈), one uses the model (X,∈,A) where A is a unary predicate. The intended interpretation of A(y) is y∈A. Then the definition of L[A] is exactly that of L only with Def replaced by Def_{A}.
L[A] is always a model of the axiom of choice. Even if A is a set, A is not necessarily itself a member of L[A], although it always is if A is a set of ordinals.
It is essential to remember that the sets in L(A) or L[A] are usually not actually constructible and that the properties of these models may be quite different from the properties of L itself.
See also
Notes

^ Gödel, 1938

^ Barwise 1975, page 60 (comment following proof of theorem 5.9)
References

Barwise, Jon (1975). Admissible Sets and Structures. Berlin: SpringerVerlag.

Devlin, Keith J. (1984). Constructibility. Berlin: SpringerVerlag.


Gödel, Kurt (1938). "The Consistency of the Axiom of Choice and of the Generalized ContinuumHypothesis". Proceedings of the National Academy of Sciences of the United States of America (National Academy of Sciences) 24 (12): 556–557.

Gödel, Kurt (1940). The Consistency of the Continuum Hypothesis. Annals of Mathematics Studies 3. Princeton, N. J.: Princeton University Press.

This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.