World Library  
Flag as Inappropriate
Email this Article

Decision-making paradox

Article Id: WHEBN0028258023
Reproduction Date:

Title: Decision-making paradox  
Author: World Heritage Encyclopedia
Language: English
Subject: Multiple-criteria decision analysis, Analytic hierarchy process
Publisher: World Heritage Encyclopedia

Decision-making paradox

The word paradox (parádoxon (παράδοξον) in Greek) comes from the Greek words "para" (meaning against, contrary to) and "doksa" or "doxa" (meaning belief, understanding). A paradox is a seemingly true statement or group of statements that lead to a contradiction or a situation which seems to defy logic or intuition.

This particular paradox relates to decision-making and it was first identified by Triantaphyllou and Mann in 1989.[1] It was further elaborated in the book by Triantaphyllou on multi-criteria decision-making.[2] Since then it has been recognized in the related literature as a fundamental paradox in multi-criteria decision analysis (MCDA) / multi-criteria decision making (MCDM), and decision analysis, in general.[3][4][5][6][7][8] This paradox is related to the quest for determining reliable decision-making methods.

Description of this paradox

The realization for this paradox comes from the rather straightforward observation that there are numerous decision-making methods (both normative and descriptive) each one of which claims to be the "best" one. Furthermore, often these methods may yield different results when they are fed with exactly the same decision problem and data.

Finding the best decision-making method leads to the formulation of a decision problem itself for which the alternatives are the decision making methods themselves. Naturally, one needs to know the best method a-priori in order to select the best method from the available ones.

In the study reported in [1] and [2] an interesting investigation was undertaken. Since in the beginning it was assumed that the best method is not known, the problem of selecting the best method was solved by successively using different methods. The methods used in that study were the weighted sum model (WSM), the weighted product model (WPM), and two variants of the analytic hierarchy process (AHP). It was found that when a method was used, say method X (which is one of the previous four methods), the conclusion was that another method was best (say, method Y). When method Y was used, then another method, say method Z, was suggested as being the best one, and so on.

Two evaluative criteria were used to formulate the previous decision-making problem (actually, an MCDM problem). The first criterion was based on the premise that a method which claims to be accurate in multi-dimensional problems (for which different units of measurement are used to describe the alternatives), should also be accurate in single-dimensional problems. For such problems, the weighted sum model (WSM) is the widely accepted approach, thus their results were compared with the ones derived from the WSM. The second evaluative criterion was based on the following situation. Suppose some alternatives are evaluated and one of them is returned as the best alternative (say alternative A). Next, a non-optimal alternative (say alternative B) is replaced by a worse one. Under normal conditions one should expect that the same alternative as before (i.e., alternative A) is the best alternative again. This is also known in the related literature as a ranking reversal.[2] However, this may not happen with some of the methods tested in those experiments. For weights of these two evaluative criteria, all possible combinations were considered such that their sum was always equal to 1.00.

Methods that have been verified to exhibit this paradox

The following is a partial list of multi-criteria decision-making methods which have been confirmed to exhibit this paradox:,[1] [2]

Looking into the future

Other methods have not been tested yet but it is very likely they may exhibit the same phenomenon. Such methods include the following:

What is the best decision making method has always been a highly contested subject. There is always an ongoing debate on this subject. At the same time, a plethora of competing methods exists. A key role in this quest is played by the study of rank reversals in decision making.

As stated earlier, it is not uncommon such methods to yield different results when they are presented with exactly the same data. Thus, this decision making paradox is likely to persist for many years to come.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.