World Library  
Flag as Inappropriate
Email this Article

Mere addition paradox

Article Id: WHEBN0000313055
Reproduction Date:

Title: Mere addition paradox  
Author: World Heritage Encyclopedia
Language: English
Subject: Utilitarianism, Average and total utilitarianism, Utility monster, List of paradoxes, Population ethics
Collection: 1984 Introductions, Paradoxes, Thought Experiments in Ethics, Utilitarianism
Publisher: World Heritage Encyclopedia

Mere addition paradox

The mere addition paradox, also known as the repugnant conclusion, is a problem in ethics, identified by Derek Parfit, and appearing in his book Reasons and Persons (1984). The paradox identifies an inconsistency between four seemingly true beliefs about the relative value of populations.


  • The paradox 1
  • Criticisms and responses 2
  • Alternative usage 3
  • See also 4
  • References 5
  • External links 6

The paradox

Consider the four populations depicted in the following diagram: A, A+, B− and B. Each bar, within a population, represents a distinct group of people, whose size is represented by the bar's width and whose happiness is represented by the bar's height. Unlike A and B, A+ and B− are thus complex populations, comprising two distinct groups of people. (For simplicity, we might imagine that everyone in a group has exactly the same level of happiness, although this is not essential to the argument. We might instead imagine that the height of a bar represents the average happiness within that group of people.)

How do these four populations compare in value? Let's start by making comparisons between pairs of populations.

First, it seems that A+ is no worse than A. This is because the people in A are no worse off in A+, while the additional people who exist in A+ are better off in A+ compared to A. (Arguably, existence is good for these additional people, assuming that they have lives which are worth living and preferable over non-existence.)

Second, it seems that B− is better than A+. This is because B− has greater total and average happiness than A+.

Finally, B seems equally as good as B− as the only difference between B− and B is that the two groups in B− are merged to form one group in B.

Put together, these three comparisons entail that B is better than A. (If y is no worse than z and x is better than y it follows that x is better than z.) However, when we directly compare A and B, it may seem that B is in fact worse than A.

Thus, we have a paradox—the mere addition paradox—because the following intuitively plausible claims are jointly inconsistent: (a) that A+ is no worse than A, (b) that B− is better than A+, (c) that B− is equally as good as B, and (d) that B is worse than A.

Criticisms and responses

Some scholars, such as Larry Temkin and Stuart Rachels, argue that the apparent inconsistency between the four claims just outlined relies on the assumption that the "better than" relation is transitive. We may resolve the inconsistency, thus, by rejecting the assumption. On this view, from the fact that A+ is no worse than A and that B− is better than A+ it simply does not follow that B− is better than A.

Torbjörn Tännsjö argues that we must resist that the intuition that B is worse than A. While the lives of those in B are worse than those in A, there are more of them and thus the collective value of B is greater than A.

Alternative usage

An alternative use of the term mere addition paradox was presented in a paper by Hassoun in 2010.[1] It identifies paradoxical reasoning that occurs when certain statistical measures are used to calculate results over a population. For example, if a group of 100 people together control $100 worth of resources, the average wealth per capita is $1. If a single rich person then arrives with 1 million dollars, then the total group of 101 people controls $1,000,100, making average wealth per capita $9,901, implying a drastic shift away from poverty even though nothing has changed for the original 100 people. Hassoun defines a no mere addition axiom to be used for judging such statistical measures: "merely adding a rich person to a population should not decrease poverty" (although acknowledging that in actual practice adding rich people to a population may provide some benefit to the whole population).

This same argument can be generalized to many cases where proportional statistics are used: for example, a game sold on a download service may be considered a failure if less than 20% of those who download the demo then purchase the game. Thus, if 10,000 people download the demo of a game and 2,000 buy it, the game is a borderline success; however, it would be rendered a failure by an extra 500 people downloading the demo and not buying, even though this "mere addition" changes nothing with regard to income or consumer satisfaction from the previous situation.

See also


  1. ^ "Another Mere Addition Paradox? Some Reflections on Variable Population Poverty Measurement". UNU-WIDER. November 2010.  

External links

  • The Repugnant Conclusion (Stanford Encyclopedia of Philosophy)
  • Contestabile, Bruno. On the Buddhist Truths and the Paradoxes in Population Ethics, Contemporary Buddhism, Vol. 11 Issue 1, pp. 103–113, Routledge 2010
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.