World Library  
Flag as Inappropriate
Email this Article

Taxonomy (biology)

Article Id: WHEBN0000030463
Reproduction Date:

Title: Taxonomy (biology)  
Author: World Heritage Encyclopedia
Language: English
Subject: Dinosaur, Fungus, Systematics, Sensu, Klaus Rohde
Collection: Biological Nomenclature, Classification Systems, Nomenclature, Taxonomy (Biology)
Publisher: World Heritage Encyclopedia

Taxonomy (biology)

Taxonomy (from binomial nomenclature for naming organisms.

With the advent of such fields of study as Angiosperm Phylogeny Group for all living flowering plant families (the APG III system).[4]


  • Definition 1
  • Alpha taxonomy 2
  • History of taxonomy 3
    • Pre-Linnaean taxonomy 3.1
      • Early taxonomists 3.1.1
      • Aristotle to Pliny the Elder 3.1.2
      • Other pre-Linnaean taxonomists 3.1.3
    • The Linnaean era 3.2
    • Phylogenetics and cladistics 3.3
  • Application 4
    • Classifying organisms 4.1
    • Taxonomic descriptions 4.2
  • Phenetics 5
  • Databases 6
  • See also 7
  • Notes 8
  • References 9
  • External links 10


The exact definition of taxonomy varies from source to source, but the core of the discipline remains: the conception, naming, and classification of organism groups. The exact relationship of systematics and classification to taxonomy also varies because the usage of the terms in biology originated independently.[5] As points of reference, recent definitions of taxonomy are presented below:

  1. Theory and practice of grouping individuals into species, arranging species into larger groups, and giving those groups names, thus producing a classification;[2]
  2. A field of science (and major component of systematics) that encompasses description, identification, nomenclature, and classification;[3]
  3. The science of classification, in biology the arrangement of organisms into a classification.[6]
  4. "The science of classification as applied to living organisms, including study of means of formation of species, etc."[7]
  5. "The analysis of an organism's characteristics for the purpose of classification"[8]
  6. "[Systematics] studies phylogeny to provide a pattern that can be translated into the classification and names of the more inclusive field of taxonomy." (Listed as a desirable but unusual definition[9])

The varied definitions either place taxonomy as a sub-area of systematics (definition 2), invert that relationship (definition 6), or appear to consider the two terms synonymous. There is some disagreement as to whether biological nomenclature is considered a part of taxonomy (definitions 1 and 2), or a part of systematics outside taxonomy. For example, the last definition[8] is paired with the following definition of systematics that places nomenclature outside taxonomy:

  • Systematics: "The study of the identification, taxonomy and nomenclature of organisms, including the classification of living things with regard to their natural relationships and the study of variation and the evolution of taxa".

Alpha taxonomy

The term "alpha taxonomy" is primarily used today to refer to the discipline of finding, describing, and naming taxa, particularly species. In earlier literature, the term had a different meaning, referring to morphological taxonomy, and the products of research through the end of the nineteenth century.

William Bertram Turrill introduced the term "alpha taxonomy" in a series of papers published in 1935 and 1937 in which he discussed the philosophy and possible future directions of the discipline of taxonomy.[10]
… there is an increasing desire amongst taxonomists to consider their problems from wider view-points, to investigate the possibilities of closer co-operation with their cytological, ecological and genetical colleagues and to acknowledge that some revision or expansion, perhaps of a drastic nature, of their aims and methods may be desirable … Turrill (1935) has suggested that while accepting the older invaluable taxonomy, based on structure, and conveniently designated "alpha", it is possible to glimpse a far-distant taxonomy built up on as wide a basis of morphological and physiological facts as possible, and one in which "place is found for all observational and experimental data relating, even if indirectly, to the constitution, subdivision, origin and behaviour of species and other taxonomic groups". Ideals can, it may be said, never be completely realized. They have, however, a great value of acting as permanent stimulants, and if we have some, even vague, ideal of an "omega" taxonomy we may progress a little way down the Greek alphabet. Some of us please ourselves by thinking we are now groping in a "beta" taxonomy.[10]

Turrill thus explicitly excludes from alpha taxonomy various areas of study that he includes within taxonomy as a whole, such as ecology, physiology, genetics, and cytology. He further excludes phylogenetic reconstruction from alpha taxonomy (pages 365–366).

Later authors have used the term in a different sense, to mean the delimitation of species (not subspecies or taxa of other ranks), using whatever investigative techniques are available, and including sophisticated computational or laboratory techniques.[11]

History of taxonomy

Pre-Linnaean taxonomy

Early taxonomists

Taxonomy has been called "the world's oldest profession",[12] and naming and classifying our surroundings has likely been taking place as long as mankind has been able to communicate. It would always have been important to know the names of poisonous and edible plants and animals in order to communicate this information to other members of the family or group.

Medicinal plant illustrations show up in Egyptian wall paintings from c. 1500 BC.[13] The paintings clearly show that these societies valued and communicated the uses of different species, and therefore had a basic taxonomy in place.

Aristotle to Pliny the Elder

Historical records show that informally classifying organisms took place at least back to the days of Aristotle (Greece, 384–322 BC),[14] who was the first to begin to classify all living things. Some of the terms he gave to animals, such as "invertebrates" and "vertebrates" are still commonly used today. His student Theophrastus (Greece, 370–285 BC) carried on this tradition, and wrote a classification of some 500 plants called Historia Plantarum. Again, several plant groups currently still recognized can be traced back to Theophrastus, such as Cornus, Crocus, and Narcissus. The next major turn-of-the-millennia era taxonomist came in the form of Pliny the Elder (Rome, 23–79 AD). His elaborate 160-volume work Naturalis Historia described many plants, and even gave many of them Latin binomial names.

Other pre-Linnaean taxonomists

It was not until c. 1500 years later that taxonomic works became ambitious enough to replace the ancient texts. This is often credited to the development of sophisticated optic lenses, which allowed for the Andrea Cesalpino (Italy, 1519–1603), who is often referred to as "the first taxonomist". His magnum opus De Plantis came out in 1583, and described over 1500 plant species. Two large plant families that he first recognized are still in use today: the Asteraceae and Brassicaceae. Then in the seventeenth century John Ray (England, 1627–1705) wrote many important taxonomic works. Arguably his greatest accomplishment was Methodus Plantarum Nova (1682), where he published over 18,000 plant species. At the time his classifications were perhaps the most complex yet produced by any taxonomist, as he based his taxa on many combined characters. The next major taxonomic works were produced by Joseph Pitton de Tournefort (France, 1656–1708). His work from 1700, Institutiones Rei Herbariae, included over 9000 species in 698 genera, and directly influenced Linnaeus as it was the text he used as a young student.[13]

The Linnaean era

Title page of Systema Naturae, Leiden, 1735

The Swedish botanist Linnaean system was born, and is still used in essentially the same way today as it was in the eighteenth century. Currently, plant and animal taxonomists regard Linnaeus' work as the "starting point" for valid names (at 1753 and 1758 respectively).[18] Names published before these dates are referred to as "pre-Linnaean", and not considered valid (with the exception of spiders published in Svenska Spindlar). Even taxonomic names published by Linnaeus himself before these dates are considered pre-Linnaean.[13]

The word taxonomy was introduced in 1813 by Candolle, in his Théorie élémentaire de la botanique.[19]

Phylogenetics and cladistics

Phylogenetic tree of life
See full articles at Phylogenetics and Cladistics

Today, traditional rank-based biological classifications persist in a structure largely unchanged since the 1700s; however, how the relationships of these taxa are investigated has changed drastically in recent decades. It is now common for biologists to devise a classification based on the results of phylogenetic analysis using DNA sequence data, and taxa are typically required to be clades. Although phylogenetics itself is fundamental to modern-day systematics, its use for the description of new taxa, and for their placement within a classification scheme, is not required.


Biological taxonomy is a sub-discipline of scientific community, but society as a whole.[12]

Classifying organisms

Biological classification is a critical component of the taxonomic process. As a result, it informs the user as to what the relatives of the taxon are hypothesized to be. Biological classification uses taxonomic ranks, including, among others (in order from most inclusive to least inclusive): Domain, Kingdom, Phylum, Class, Order, Family, Genus, and Species.[Note 1]

Taxonomic descriptions

Type specimen for Nepenthes smilesii, a tropical pitcher plant.

The 'definition' of a taxon is encapsulated by its description and/or its diagnosis. There are no set rules governing the definition of taxa, but the naming and publication of new taxa is governed by sets of rules. In zoology, the nomenclature for the more commonly used ranks (superfamily to subspecies), is regulated by the International Code of Zoological Nomenclature (ICZN Code). In the fields of botany, phycology, and mycology, the naming of taxa is governed by the International Code of Nomenclature for algae, fungi, and plants (ICN).

The initial description of a taxon involves five main requirements:[21]

  1. The taxon must be given a name based on the 26 letters in the Latin alphabet (a binomial for new species, or uninomial for other ranks).
  2. The name must be unique (i.e. not a homonym).
  3. The description must be based on at least one name-bearing type specimen.
  4. It should include statements about appropriate attributes to either describe (define) the taxon, and/or differentiate it from other taxa (the diagnosis, ICZN Code, Article 13.1.1, ICN, Article 38). Both codes deliberately separate defining the content of a taxon (its circumscription) from defining its name.
  5. These first four requirements must be published in a work that is obtainable in numerous identical copies, as a permanent scientific record.

However, often much more information is included, like the geographic range of the taxon, ecological notes, chemistry, behavior, etc. How researchers arrive at their taxa varies; depending on the available data, and resources, methods vary from simple quantitative or qualitative comparisons of striking features, to elaborate computer analyses of large amounts of DNA sequence data.


In phenetics, also known as taximetrics, organisms are classified based on overall similarity, regardless of their phylogeny or evolutionary relationships. It results in a measure of evolutionary "distance" between taxa. Phenetic methods have become relatively rare in modern times, largely superseded by cladistic analyses, as phenetic methods do not distinguish plesiomorphic from apomorphic traits. However, certain phenetic methods, such as neighbor joining, have found their way into cladistics, as a reasonable approximation of phylogeny when more advanced methods (such as Bayesian inference) are too computationally expensive.


Modern taxonomy uses database technologies to search and catalog classifications and their documentation. While there is no commonly used database, there are comprehensive databases such as the Catalogue of Life, which attempts to list every documented species. The catalogue listed 1.4 million species for all kingdoms as of May 2012, claiming coverage of more than 74% of the estimated 1.9 million species known to modern science.[22]

See also


  1. ^ This ranking system can be remembered by the mnemonic "Do Kings Play Chess On Fine Glass Sets?"


  1. ^ Harper, Douglas. "Taxonomy". Online Etymology Dictionary. Retrieved April 18, 2011. 
  2. ^ a b Judd, W.S., Campbell, C.S., Kellog, E.A., Stevens, P.F., Donoghue, M.J. (2007) Taxonomy. In Plant Systematics – A Phylogenetic Approach, Third Edition. Sinauer Associates, Sunderland.
  3. ^ a b Simpson, Michael G. (2010). "Chapter 1 Plant Systematics: an Overview". Plant Systematics (2nd ed.). Academic Press.  
  4. ^ Angiosperm Phylogeny Group (2009), "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III", Botanical Journal of the Linnean Society 161 (2): 105–121,  
  5. ^ Wilkins, J. S. What is systematics and what is taxonomy?. Available on
  6. ^ Kirk, P.M., Cannon, P.F., Minter, D.W., Stalpers, J.A. eds. (2008) Taxonomy. In Dictionary of the Fungi, 10th edition. CABI, Netherlands.
  7. ^ Walker, P.M.B., ed. (1988). The Wordsworth Dictionary of Science and Technology. W. R. Chambers Ltd. and Cambridge University Press. 
  8. ^ a b Lawrence, E. (2005). Henderson's Dictionary Of Biology. Pearson/Prentice Hall.  
  9. ^  
  10. ^ a b Turrill, W.B. (1938). "The Expansion Of Taxonomy With Special Reference To Spermatophyta". Biological Reviews 13 (4): 342–373.  
  11. ^ Steyskal, G.C. (1965). "Trend curves of the rate of species description in zoology". Science 149 (3686): 880–882.  
  12. ^ a b Knapp, S. (2010). "What's in a name? A history of taxonomy". 
  13. ^ a b c Manktelow, M. (2010) History of Taxonomy. Lecture from Dept. of Systematic Biology, Uppsala University.
  14. ^ Mayr, E. (1982) The Growth of Biological Thought. Belknap P. of Harvard U.P, Cambridge (Mass.).
  15. ^ Linnaeus, C. (1735) Systema naturae, sive regna tria naturae systematice proposita per classes, ordines, genera, & species. Haak, Leiden
  16. ^ Linnaeus, C. (1753) Species Plantarum. Stockholm, Sweden.
  17. ^ Linnaeus, C. (1758) Systema naturae, sive regna tria naturae systematice proposita per classes, ordines, genera, & species, 10th Edition. Haak, Leiden
  18. ^ Donk, M.A. (1957) Typification and later starting-points. Taxon 6: 245–256.
  19. ^ Singh, Gurcharan (2004). Plant systematics: an integrated approach. Science Publishers, p. 20..
  20. ^ "What is taxonomy?". Natural History Museum London. 
  21. ^ "How can I describe new species?". International Commission on Zoological Nomenclature. 
  22. ^ "About the Catalogue of Life: 2012 Annual Checklist". Catalogue of Life.  

External links

  • What is taxonomy? at the Natural History Museum London
  • What is taxonomy? at the European Distributed Institute of Taxonomy
  • Taxonomy related articles at The Guardian
  • Taxonomy at NCBI the National Center for Biotechnology Information
  • Taxonomy at UniProt the Universal Protein Resource
  • ITIS the Integrated Taxonomic Information System
  • GTI the Global Taxonomic Initiative
  • TRIN the Taxonomy Research & Information Network
  • CETaF the Consortium of European Taxonomic Facilities
  • Wikispecies free species directory
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.