World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Effects of Cold Electron Number Density Variation on Whistler-mode Wave Growth : Volume 32, Issue 7 (31/07/2014)

By Tang, R.

Click here to view

Book Id: WPLBN0004002491
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Effects of Cold Electron Number Density Variation on Whistler-mode Wave Growth : Volume 32, Issue 7 (31/07/2014)  
Author: Tang, R.
Volume: Vol. 32, Issue 7
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Description
Description: Institute of Space Science and Technology, Nanchang University, Nanchang, 330031, China. We examine how the growth of magnetospheric whistler-mode waves depends on the cold (background) electron number density N0. The analysis is carried out by varying the cold-plasma parameter a = (electron gyrofrequency)2/(electron plasma frequency)2 which is proportional to 1/N0. For given values of the thermal anisotropy AT and the ratio Nh/N0, where Nh is the hot (energetic) electron number density, we find that, as N0 decreases, the maximum values of the linear and nonlinear growth rates decrease and the threshold wave amplitude for nonlinear growth increases. Generally, as N0 decreases, the region of (Nh/N0, AT)-parameter space in which nonlinear wave growth can occur becomes more limited; that is, as N0 decreases, the parameter region permitting nonlinear wave growth shifts to the top right of (Nh/N0, AT) space characterized by larger Nh/N0 values and larger AT values. The results have implications for choosing input parameters for full-scale particle simulations and also in the analysis of whistler-mode chorus data.

Summary
Effects of cold electron number density variation on whistler-mode wave growth

Excerpt
Ashour-Abdalla, M. and Kennel, C. F.: Nonconvective and convective electron cyclotron harmonic instabilities, J. Geophys. Res., 83, 1531, doi:10.1029/JA083iA04p01531, 1978.; Dory, R. A., Guest, G. E., and Harris, E. G.: Unstable electrostatic plasma waves propagating perpendicular to a magnetic field, Phys. Rev. Lett., 14, 131, doi:10.1103/PhysRevLett.14.131, 1965.; Hikishima, M., Yagitani, S., Omura, Y., and Nagano I.: Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere, J. Geophys. Res., 114, A01203, doi:10.1029/2008JA013625, 2009.; Hikishima, M., Omura, Y., and Summers, D.: Microburst precipitation of energetic electrons associated with chorus wave generation, Geophys. Res. Lett., 37, L07103, doi:10.1029/2010GL042678, 2010.; Katoh, Y. and Omura Y.: Amplitude dependence of frequency sweep rates of whistler mode chorus emissions, J. Geophys. Res., 116, A07201, doi:10.1029/2011JA016496, 2011.; Kennel, C. F. and Petschek, H. E.: Limit on stably trapped particle fluxes, J. Geophys. Res., 71, 1–28, doi:10.1029/JZ071i001p00001, 1966.; Lorentzen, K. R., Blake, J. B., Inan, U. S., and Bortnik, J.: Observations of relativistic electron microbursts in association with VLF chorus, J. Geophys. Res., 106, 6017, doi:10.1029/2000JA003018, 2001.; Mauk, B. H. and Fox, N. J.: Electron radiation belts of the solar system, J. Geophys. Res., 115, A12220, doi:10.1029/2010JA015660, 2010.; Meredith, N. P., Cain, M., Horne, R. B., Thorne, R. M., Summers, D., and Anderson, R. R.: Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods, J. Geophys. Res., 108, 1248, doi:10.1029/2002JA009764, 2003.; Ni, B., Thorne, R. M., Shprits, Y. Y., and Bortnik, J.: Resonant scattering of plasma sheet electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation, Geophys. Res. Lett., 35, L11106, doi:10.1029/2008GL034032, 2008.; O'Brien, T. P., Looper, M. D., and Blake, J. B.: Quantification of relativistic electron microburst losses during the GEM storms, Geophys. Res. Lett., 31, L04802, doi:10.1029/2003GL018621, 2004.; Omura, Y., Katoh, Y., and Summers, D.: Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113, A04223, doi:10.1029/2007JA012622, 2008.; Omura, Y., Hikishima, M., Katoh, Y., Summers, D., and Yagitani, S.: Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere, J. Geophys. Res., 114, A07217, doi:10.1029/2009JA014206, 2009.; Omura, Y., Nunn, D., and Summers, D.: Generation processes of whistler mode chorus emissions: Current status of nonlinear wave growth theory, in: Dynamics of the Earth's Radiation Belts and Inner Magnetosphere, Geophys. Monogr. Ser., 199, edited by: Summers D., Mann I. R., Baker D. N., and Schulz M., AGU, Washington, DC, 243–254, doi:10.1029/2012GM001347, 2012.; Roth, I., Temerin, M., and Hudson, M. K.: Resonant enhancement of relativistic electron fluxes during geomagnetically active periods, Ann. Geophys., 17, 631–638,

 

Click To View

Additional Books


  • Extrapolating Eiscat Pedersen Conductanc... (by )
  • Five-day Planetary Waves in the Middle A... (by )
  • One-step Ahead Prediction of FoF2 Using ... (by )
  • Estimates of the Field-aligned Current D... (by )
  • Pulsed Flows at the High-altitude Cusp P... (by )
  • Overlapping Ion Structures in the Mid-al... (by )
  • Evolution of Geomagnetic Aa Index Near S... (by )
  • Arctic Tidal Characteristics at Eureka (... (by )
  • Zonal Wave Numbers 1-5 in Planetary Wave... (by )
  • A New Regularized Inversion Method for t... (by )
  • The Storm Tracks and the Energy Cycle of... (by )
  • Microphysical and Optical Properties of ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.