World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

A Strategy for Gis-based 3-d Slope Stability Modelling Over Large Areas : Volume 7, Issue 4 (11/08/2014)

By Mergili, M.

Click here to view

Book Id: WPLBN0004009717
Format Type: PDF Article :
File Size: Pages 39
Reproduction Date: 2015

Title: A Strategy for Gis-based 3-d Slope Stability Modelling Over Large Areas : Volume 7, Issue 4 (11/08/2014)  
Author: Mergili, M.
Volume: Vol. 7, Issue 4
Language: English
Subject: Science, Geoscientific, Model
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Alvioli, M., Metz, M., Marchesini, I., Schneider-Muntau, B., Mergili, M., Guzzetti, F., & Rossi, M. (2014). A Strategy for Gis-based 3-d Slope Stability Modelling Over Large Areas : Volume 7, Issue 4 (11/08/2014). Retrieved from

Description: Institute of Applied Geology, BOKU University, Vienna, Austria. GIS-based deterministic models may be used for landslide susceptibility mapping over large areas. However, such efforts require specific strategies to (i) keep computing time at an acceptable level, and (ii) parameterize the geotechnical data. We test and optimize the performance of the GIS-based, 3-D slope stability model r.slope.stability in terms of computing time and model results. The model was developed as a C- and Python-based raster module of the open source software GRASS GIS and considers the 3-D geometry of the sliding surface. It calculates the factor of safety (FoS) and the probability of slope failure (Pf) for a number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Model input consists of a DEM, ranges of geotechnical parameter values derived from laboratory tests, and a range of possible soil depths estimated in the field. Probability density functions are exploited to assign Pf to each ellipsoid. The model calculates for each pixel multiple values of FoS and Pf corresponding to different sliding surfaces. The minimum value of FoS and the maximum value of Pf for each pixel give an estimate of the landslide susceptibility in the study area. Optionally, r.slope.stability is able to split the study area into a defined number of tiles, allowing parallel processing of the model on the given area. Focusing on shallow landslides, we show how multi-core processing allows to reduce computing times by a factor larger than 20 in the study area. We further demonstrate how the number of random slip surfaces and the sampling of parameters influence the average value of Pf and the capacity of r.slope.stability to predict the observed patterns of shallow landslides in the 89.5 km2 Collazzone area in Umbria, central Italy.

A strategy for GIS-based 3-D slope stability modelling over large areas

Alvioli, M., Rossi, M., and Guzzetti, F.: Scaling properties of rainfall-induced landslides predicted by a physically based model, Geomorphology, 213, 38–47, 2014.; Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., and Reichenbach, P.: Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar, Nat. Hazards Earth Syst. Sci., 7, 637–650, doi:10.5194/nhess-7-637-2007, 2007.; Ardizzone, F., Fiorucci, F., Santangelo, M., Cardinali, M., Mondini, A. C., Rossi, M., Reichenbach, P., and Guzzetti, F.: Very-high resolution stereoscopic satellite images for landslide mapping, in: Landslide Science and Practice: Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning, edited by: Margottini, C., Canuti, P., and Sassa, K., Springer, Heidelberg, Berlin, New York, 95–101, 2013.; Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS – a Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0, USGS Open-File Rep. 2008-1159, 2008.; Brabb, E. E.: Innovative approaches to landslide hazard and risk mapping, in: Proceedings of the 4th International Symposium on Landslides, Toronto, Ontario, Canada, 16–21 September 1984, 1, 307–324, 1984.; Bishop, A. W.: The use of the slip circle in the stability analysis of slopes, Geotechnique, 5, 7–17, 1954.; Burton, A. and Bathurst, J. C.: Physically based modelling of shallow landslide sediment yield at a catchment scale, Environ. Geol., 35, 89–99, 1998.; Cardinali, M., Ardizzone, F., Galli, M., Guzzetti, F., and Reichenbach, P.: Landslides triggered by rapid snow melting, the December 1996–January 1997 event in Central Italy, in: Proceedings 1st Plinius Conference on Mediterranean Storms, edited by: Claps, P. and Siccardi, F., Maratea, Italy, 14–16 October 1999, 439–448, 2000.; Carson, M. A. and Kirkby, M. J.: Hillslope Form and Process, Cambridge University Press, London, 1972.; Coulomb, C. A.: Essais sur une application des règles des maximis et minimis à quelques problems de statique relatifs à l'architecture, Mémoirs présentées par divers Savants, Academie des Sciences Paris, 7, 343–387, 1776.; Crozier, M. J.: Landslides: Causes Consequences and Environment, Croom Helm, London, 1986.; Duncan, J. M. and Wright, S. G.: Soil Strength and Slope Stability, Wiley, Hoboken, NJ, 2005.; El-Ramly, H., Morgenstern, N. R., and Cruden, D. M.: Probabilistic assessment of stability of a cut slope in residual soil, Geotechnique, 55, 77–84, 2005.; Fellenius, W.: Erdstatische Berechnungen mit Reibung und Kohäsion (Adhäsion) und unter Annahme kreiszylindrischer Gleitflächen, W. Ernst & Sohn, Berlin, Germany, 1927.; Fiorucci, F., Cardinali, M., Carlà, R., Rossi, M., Mondini, A. C., Santurri, L., Ardizzone, F., and Guzzetti, F.: Seasonal landslides mapping and estimation of landslide mobilization rates using aerial and satellite images, Geomorphology, 129, 59–70, 2011.; Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., and Reichenbach, P.: Comparing landslide inventory maps, Geomorphology, 94, 268–289, 2008.; Griffiths, D. W., Huang, J., and de Wolfe, G. F.: Numerical and analytical observations on long and infinite slopes, Int. J. Numer. Anal. Met., 35, 569–585, 2011.; Godt, J. W., Baum, R. L., Savage, W. Z., Salciarini, D., Schulz, W. H., and Harp, E. L.: Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework, Eng. Geol., 102, 214–226, 2008.; GRASS Development Team: GRASS GIS. The world's leading Free GIS software, Open Source Geospatial Foundation Project, available at: (last access: 31 January 2014), 2014.; Gruber, F. E. and Mergili, M.: Regional-scale analysis of high-mountain multi-hazard and risk indicators in the Pamir (Tajikistan) with GRASS GIS, Nat. Hazards Earth Syst. Sci., 13


Click To View

Additional Books

  • Modeling Global Atmospheric Co2 with Imp... (by )
  • Assimilation of Surface No2 and O3 Obser... (by )
  • Quantifying Atmospheric Transport, Chemi... (by )
  • Δ18O Water Isotope in the ILoveclim Mode... (by )
  • Construction of an Eulerian Atmospheric ... (by )
  • Coupling Between the Jules Land-surface ... (by )
  • Using Model Reduction to Predict the Soi... (by )
  • Root Mean Square Error (Rmse) or Mean Ab... (by )
  • Evaluation of North Eurasian Snow-off Da... (by )
  • Pre-industrial and Mid-pliocene Simulati... (by )
  • The Implementation of a Mixed Layer Mode... (by )
  • Methods for Automatized Detection of Rap... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.